Baryonic B Decays at BABAR

Stephanie Majewski Stanford University

TM & @ Nelvana

Brookhaven National Laboratory Seminar June 1, 2007

Baryonic B Decays: Motivation

Baryon Production
in B decays
Compare 2:3:4-body
B decay rates
Baryon-antibaryon
"threshold enhancement"

Baryonic B Decays: Motivation

Baryon Production in B decays

Compare 2:3:4-body

B decay rates

Baryon-antibaryon

"threshold enhancement"

Search for exotic baryon states

Angular analysis to determine baryon spin

Baryonic B Decays: Motivation

Baryon Production in B decays

Compare 2:3:4-body

B decay rates

Baryon-antibaryon

"threshold enhancement"

Search for exotic baryon states

Angular analysis to determine baryon spin

Radiative baryonic
B decays could
probe new physics

$$b \rightarrow s \gamma$$

S. Majewski, Stanford University

BNL Seminar

Radiative B Decays

Flavor-Changing Neutral Current

- Absent at tree-level in SM
- Dominated by W-t loop

Sensitive to new physics

Radiative B Decays

Radiative Baryonic B Decays

Measured by Belle: arXiv:0704.2672 with 410 fb⁻¹

$$\mathcal{B}\left(B^{-} \to \Lambda \overline{p}\gamma\right) = (2.5 \pm 0.4 \pm 0.2) \times 10^{-6}$$

theory

Cheng and Yang, Phys. Lett. **B533**, 271 (2002): $\sim 1.2 \times 10^{-6}$ Geng and Hsiao, Phys. Lett. **B610**, 67 (2005): $\sim 1.0 \times 10^{-6}$

Theoretical Predictions

- Predict baryonic B-meson branching fractions from various models:
 - Pole model, diquark model, QCD sum rules, etc. ...

- Early 90s predictions were much too large [e.g., B $\rightarrow \Lambda_c$ p theory: $O(10^{-3})$, meas: 2 × 10^{-5}]
- Need experiments to help distinguish models

Features of Baryonic B Decays

Decay Rates:
 lower Q-value → higher BF

e.g., Charmed baryonic B decays: BF(2-body):(3-body):(4-body) ~ 1:10:100

$$\frac{\mathcal{B}\left(B^{-}\to \Lambda_{c}^{+}\overline{p}\pi^{-}\right)}{\mathcal{B}\left(\overline{B}^{0}\to \Lambda_{c}^{+}\overline{p}\right)} = 16.4\pm2.9\pm1.4$$

 Threshold enhancement: peak near threshold in baryon-antibaryon system

Qualitative Explanation

Baryon (**B**) production is favored when there is "reduced energy release" from the baryon-antibaryon system

W.-S. Hou and A. Soni, PRL **86**, 4247 (2001).

$$B \to \mathbf{B} \overline{\mathbf{B}}$$

$$m_{\mathbf{B}\mathbf{\bar{B}}} = m_{\mathbf{B}}$$

suppressed

$$B \rightarrow \mathbf{B} \overline{\mathbf{B}} \mathbf{M}$$

m_B < m_B < m_B recoil meson M carries away energy favored

Outline

Results from BABAR....

•
$$B \to p\overline{p}K$$

•
$$B o P^{pT}$$
• $B o D^{(*)}p\overline{p}(\pi)$
• $B o \Lambda \overline{p}\pi$
• $B o \Lambda_c \overline{p}(\pi)$

•
$$B \to \Lambda \overline{p} \pi$$

•
$$B \to \Lambda_c \overline{p}(\pi)$$

TM & @ Nelvana

Silicon Vertex Tracker

PEP-II/BABAR Performance

S. Majewski, Stanford University

BNL Seminar

$$\Delta E = E_B^* - \sqrt{s/2}$$

Kinematics
$$m_{\rm ES} = \sqrt{((s/2 + \mathbf{p}_i \cdot \mathbf{p}_B)^2/E_i^2 - \mathbf{p}_B^2)}$$

•
$$B \to p\overline{p}K$$

•
$$B \to D^{(*)} p \overline{p}(\pi)$$

•
$$B \to \Lambda \overline{p} \pi$$

TM & @ Nelvana

BABAR: PRD RC **72**, 051101 (2005)

$$B^+ \to p \overline{p} K^+$$
 Diagrams

BABAR: PRD RC **72**, 051101 (2005)

$$B^+ \to p \overline{p} K^+$$
 Results

BABAR: PRD RC **72**, 051101 (2005)

$$\mathcal{B}\left(B^{+} \to p\overline{p}K^{+}\right)$$

$$\mathcal{B}(B^+ \to p\bar{p}K^+)_{\text{tot}} = (6.7 \pm 0.5 \pm 0.4) \times 10^{-6}$$

pp Threshold Enhancement

pK⁺ Correlation?

Search for Exotic Baryons

predicted in the region $1.43 < m_{pK} + < 1.70 \text{ GeV}/c^2$

J. High Energy Phys. 05 (2004) 002 PRD **69**, 077501 (2004) J. Exp. Theor. Phys. **97**, 433 (2003) Ukr. Phys. J. **49**, 944 (2004)

$$\mathcal{B}\left(B^{+}\to\Theta^{*++}\overline{p}\right)\times\mathcal{B}\left(\Theta^{*++}\to pK^{+}\right)<1.2\times10^{-7}$$

•
$$B \to p\overline{p}K$$

•
$$B \to D^{(*)} p \overline{p}(\pi)$$

•
$$B \to \Lambda \overline{p} \pi$$

•
$$B \to \Lambda_c \overline{p}(\pi)$$

TM & @ Nelvana

$B o D p \overline{p}(\pi)$ Diagrams

S. Majewski, Stanford University

25

BNL Seminar

BABAR: PRD RC 74, 051101 (2006)

$$\mathcal{B}\left(B \to Dp\overline{p}(\pi)\right)$$

S. Majewski, Stanford University

BNL Seminar

BABAR: PRD RC **74**, 051101 (2006)

$$\mathcal{B}\left(B \to Dp\overline{p}(\pi)\right)$$

S. Majewski, Stanford University

27

BNL Seminar

pp Threshold Enhancement

pp Threshold Enhancement

Search for Exotic Baryons

30

PLB **588**, 17 (2004)

 $m(D^*\bar{p}) (GeV/c^2)$

•
$$B \to p\overline{p}K$$

•
$$B \to D^{(*)} p \overline{p}(\pi)$$

•
$$B \to \Lambda \overline{p} \pi$$

•
$$B \to \Lambda_c \overline{p}(\pi)$$

TM & @ Nelvana

BABAR: hep-ex/0608020 (2006)

$$\overline{B}^0 \to \Lambda \overline{p} \pi^+$$

$$\mathcal{B}\left(\overline{B}^{0} \to \Lambda \overline{p} \pi^{+}\right) = (3.3 \pm 0.5 \pm 0.3) \times 10^{-6}$$

Ap Threshold Enhancement

•
$$B \to p\overline{p}K$$

•
$$B o D^{(*)} p \overline{p}(\pi)$$
• $B o \Lambda \overline{p} \pi$
• $B o \Lambda_c \overline{p}(\pi)$

•
$$B \to \Lambda \overline{p} \pi$$

•
$$B \to \Lambda_c \overline{p}(\pi)$$

TM & @ Nelvana

$B o \Lambda_c \overline{p} \left(\pi ight)$ Diagrams

Reconstruction

 μ = 2,286.0 \pm 0.1 MeV

- Reconstruct Λ_c in 5 decay modes; constrain $m(\Lambda_c)$ to $m(\Lambda_c)_{PDG}$
- Decay modes:

$$\Lambda_c^+ \to pK^-\pi^+$$

$$\Lambda_c^+ \to pK_S^0$$

$$\Lambda_c^+ \to pK_S^0\pi^+\pi^-$$

$$\Lambda_c^+ \to \Lambda\pi^+$$

$$\Lambda_c^+ \to \Lambda\pi^+\pi^-\pi^+$$

Reconstruction

 μ = 2,286.0 \pm 0.1 MeV

- Reconstruct Λ_c in 5 decay modes; constrain $m(\Lambda_c)$ to $m(\Lambda_c)_{PDG}$
- Reconstruct B candidate

Blind Analysis

- Perform optimization of S/√S+B using sideband data and signal MC samples
- Investigate backgrounds, determine fit strategy, validate fit before unblinding
- validate fit before unblinding validate fit before unblinding

Results Unblinded

Mode	Signal yield	$arepsilon_{ ext{(eff)}}$	\mathcal{B}
$\overline{\overline{B}{}^0 \to \Lambda_c^+ \overline{p}}$	50 ± 8	20.2%	$(2.15 \pm 0.36 \pm 0.13 \pm 0.56) \times 10^{-5}$
$B^- \to \Lambda_c^+ \overline{p} \pi^-$	571 ± 34	14.2%	$(3.53 \pm 0.18 \pm 0.31 \pm 0.92) \times 10^{-4}$

Results were presented at ICHEP 2006 hep-ex/0706055

Binned Efficiency Correction

Threshold Enhancement

 $_s\mathcal{P}lot$ weighting technique separates signal & background

M. Pivk and F.R. LeDiberder, NIM **A555**, 356 (2005).

Threshold Enhancement

Resonant Substructure

 $_s\mathcal{P}lot$ weighting technique separates signal & background

M. Pivk and F.R. LeDiberder, NIM **A555**, 356 (2005).

Resonant Substructure

Baryon Spin

 Most baryon J^P quantum numbers have not been measured

Exception: $J(\Omega^-) = 3/2$

Figure 2: SU(4) multiplets of baryons made of u, d, s, and c quarks. (a) The 20-plet with an SU(3) decuplet on the lowest level. (b) The 20'-plet with an SU(3) octet on the lowest level. (c) The $\overline{4}$ -plet.

PDG 2006

Spin measurement of Ω^- from $\Xi_c^0 \to \Omega^- K^+, \Omega^- \to \Lambda K^-$

 $J_{\Omega} \ge 7/2$ also excluded: angular distribution increases more steeply near $\cos \theta \sim \pm 1$ and has $(2 J_{\Omega} - 2)$ turning points.

BABAR PRL **97**:112001, 2006

Angular Analysis: Σ_c spin

(Assumes $J(\Lambda_c) = \frac{1}{2}$)

Angular Analysis: Σ_c spin

- I. Generate 500 toy MC samples for each spin hypothesis
- 2. Determine likelihood \mathcal{L} for each sample
- 3. Given a measurement of \mathcal{L} in data, determine probability for acceptance/rejection of each hypothesis

Baryonic B Decays: Summary

- $B \rightarrow B B (M)$ decays provide a laboratory for:
 - insight into baryon production
 - searches for exotic baryons
 - spin measurements of (charmed) baryons
 - searches for <u>new physics</u>
 - → (only if baryon production is understood)
- Look for more BABAR results this summer!

Active and Exciting Area of Research at the B-Factories

Extra Slides

Heavy Flavor Averaging Group March 2007

Compilation of B^+ Baryonic Branching Fractions All branching fractions are in units of 10^{-6} ; limits are 90% CL

In PDG2006 New since PDG2006 (preliminary) New since PDG2006 (published)

RPP#	Mode	PDG2006 Avg.	BABAR	Belle	CLEO	New Avg.
286	$p\overline{p}\pi^+$	$3.1^{+0.8}_{-0.7}$ §		$3.06^{+0.73}_{-0.62} \pm 0.37 \ \ddagger$	< 160	$3.06^{+0.82}_{-0.72}$
289	$p\overline{p}K^+$	$5.6 \pm 1.0 \ \S$	$6.7 \pm 0.5 \pm 0.4 \dagger$	$5.30^{+0.45}_{-0.39} \pm 0.58 \ \ddagger$		6.10 ± 0.48
290	$\Theta^{++}\overline{p}^{\;*}$	< 0.091	< 0.09	< 0.091		< 0.09
291	$f_J(2221)K^{+*}$	< 0.41		< 0.41		< 0.41
292	$p\overline{\Lambda}(1520)$	< 1.5	< 1.5			< 1.5
294	$p\overline{p}K^{*+}$	$10.3^{+3.6+1.3}_{-2.8-1.7} \ddagger$		$10.3^{+3.6+1.3}_{-2.8-1.7} \ddagger$		$10.3^{+3.8}_{-3.3}$
295	$p\overline{\Lambda}$	< 0.49		< 0.29	< 1.5	< 0.29
299	$\Lambda \overline{\Lambda} \pi^+$	$< 2.8 \ddagger$		< 2.8 ‡		< 2.8 ‡
300	$\Lambda \overline{\Lambda} K^+$	$2.9^{+0.9}_{-0.7} \pm 0.4 \ddagger$		$2.9^{+0.9}_{-0.7} \pm 0.4 \ \ddagger$		$2.9^{+1.0}_{-0.8}$

[†] Charmonium decays to $p\bar{p}$ have been statistically subtracted.

[‡] The charmonium mass region has been vetoed. * Product BF - daughter BF taken to be 100%: $\Theta(1540)^{++} \to K^+ p$ (pentaquark candidate);

Heavy Flavor Averaging Group March 2007

Compilation of B^0 Baryonic Branching Fractions All branching fractions are in units of 10^{-6} ; limits are 90% CL

In PDG2006 New since PDG2006 (preliminary) New since PDG2006 (published)

RPP#	Mode	PDG2006 Avg.	BABAR	Belle	CLEO	New Avg.
266	$p\overline{p}$	< 0.27	< 0.27	< 0.10	< 1.4	< 0.10
268	$p\overline{p}K^0$	$2.1^{+0.6}_{-0.4}$ §		$2.40^{+0.64}_{-0.44} \pm 0.28 \ddagger$		$2.40^{+0.70}_{-0.52}$
269	$\Theta^+ K^0 \dagger$	< 0.23		< 0.23		< 0.23
270	$p\overline{p}K^{*0}$	$< 7.6 \; \ddagger$		< 7.6 ‡		$< 7.6 \ddagger$
271	$p\overline{\Lambda}\pi^-$	$2.6 \pm 0.5 \ \S$	$3.30 \pm 0.53 \pm 0.31$	$3.27^{+0.62}_{-0.51} \pm 0.39$	< 13	$3.29^{+0.47}_{-0.44}$
272	$p\overline{\Lambda}K^-$	< 0.82		< 0.82		< 0.82
273	$p\overline{\Sigma}^0\pi^-$	< 3.8		< 3.8		< 3.8
274	$\Lambda\overline{\Lambda}$	< 0.69		< 0.32	< 1.2	< 0.32

[§]Di-baryon mass is less than 2.85 GeV/ c^2 ; ‡ The charmonium mass region has been vetoed. † Product BF - daughter BF taken to be 100%; $\Theta(1540)^+ \to pK^0$ (pentaquark candidate).

Table 1: Branching fractions of neutral B modes producing baryons in units of 10^{-5} , upper limits are at 90% CL. The latest version is available at: http://hfag.phys.ntu.edu.tw/b2charm/00203.html

Mode	PDG 2006	Belle	BABAR	CDF	Average
$J/\psi(1S)\bar{p}p$	< 0.083	< 0.083	< 0.190		< 0.083
$\begin{array}{l} \Lambda_c^+ \bar{p} \\ \Sigma_c^{*0} \bar{p} \pi^+ \end{array}$	2.20 ± 0.80	$2.19 \pm_{0.49}^{0.56} \pm 0.32 \pm 0.57$	$2.15 \pm 0.36 \pm 0.13 \pm 0.56$		2.17 ± 0.53
$\Sigma_c^{\pi \circ} p \pi^+$	< 12.1	< 12.1 1			< 3.3
		< 3.3 2			
$D^{*0}(2007)p\bar{p}$		\(\frac{1}{0.0}\)			11.1 ± 1.3
()11		$12.0 \pm \frac{3.3}{2.9} \pm 2.1$	$6.70 \pm 2.10 \pm 0.82 \pm 0.36$ 3c		
		2.0	$11.00 \pm 1.00 \pm 0.90$ 4c		
$D^0 p ar{p}$					11.39 ± 0.91
		$11.8 \pm 1.5 \pm 1.6$	$12.40 \pm 1.40 \pm 1.16 \pm 0.30$ 3b		
D*++	100 70		$11.30 \pm 0.60 \pm 0.80$ 4b		100 33
$\sum_{c}^{*++} \bar{p}\pi^{-}$	16.0 ± 7.0	$16.3 \pm ^{5.7}_{5.1} \pm 2.8 \pm 4.2$ ¹			$12.9\pm^{3.3}_{3.4}$
		$10.3 \pm_{5.1} \pm 2.8 \pm 4.2$ 1 $12.0 \pm 1.0 \pm 2.0 \pm 3.0$ 2			
$\Sigma_c^0 ar{p} \pi^+$	10.0 ± 8.0	12.0 \(\to 1.0 \to 2.0 \to 9.0			14.0 ± 4.9
c_{L}		$14.0 \pm 2.0 \pm 2.0 \pm 4.0$ ²			
		< 15.9 1			
$\Sigma_c^{++} \bar{p} \pi^-$	28.0 ± 9.0				$21.8\pm^{5.1}_{5.2}$
		$23.8 \pm_{5.5}^{6.3} \pm 4.1 \pm 6.2$ ¹			
D+		$21.0 \pm 2.0 \pm 3.0 \pm 5.0$ ^{2c}			
$D^+p\bar{p}\pi^-$			$38.00 \pm 3.50 \pm 4.50 \pm 0.95$ 3a		33.8 ± 3.2
			$33.8 \pm 1.4 \pm 2.9$ 4a		
$D^{*+}(2010)p\bar{p}\pi^{-}$	65 ± 16		00.0 ± 1.4 ± 2.5		48.1 ± 4.9
2 (2010)PP.	00 = 10		$56.1 \pm 5.9 \pm 6.4 \pm 3.6$ ^{3d}		10.1 = 1.0
			$48.1 \pm 2.2 \pm 4.4$ 4d		
$\Lambda_c^+\Lambda_c^-ar{K}^0$		$79 \pm \frac{29}{23} \pm 12 \pm 41$			$79\pm^{52}_{49}$
$\Lambda_c^+ \bar{p} \pi^+ \pi^-$	130 ± 40	$110 \pm_{12}^{12} \pm 19 \pm 29$			110 ± 37

Mode	PDG 2006	Belle	BABAR	CDF	Average	
$\Lambda_c^- \Xi_c^+ [\Xi^- \pi^+ \pi^+]$		$9.3 \pm \frac{3.7}{2.8} \pm 1.9 \pm 2.4$			$9.3\pm^{4.8}_{4.1}$	
55						

¹ STUDY OF EXCLUSIVE B DECAYS TO CHARMED BARYONS AT BELLE. (31.7M $B\bar{B}$ pairs) 2 Study of the charmed baryonic decays $\bar{B}^0 \to \Sigma_c^{++} \bar{p} \pi^-$ and $\bar{B}^0 \to \Sigma_c^0 \bar{p} \pi^+$ (386M $B\bar{B}$ pairs); 2c B0bar to Sigmac(2455)++ pbar pi 3 Measurement of the Branching Fraction for the decays $\bar{B}^0 \to D^{*+} p \bar{p} \pi^-$, $\bar{B}^0 \to D^{+} p \bar{p} \pi^-$, $\bar{B}^0 \to D^{*0} p \bar{p}$ (124M $B\bar{B}$ pairs); 3a $\bar{B}^0 \to D^{+} p \bar{p} \pi^-$; 3b $\bar{B}^0 \to \bar{D}^0 p \bar{p}$; 3c $\bar{B}^0 \to \bar{D}^{*0} p \bar{p}$; 3d

Table 1: Branching fractions of charged B modes producing baryons in units of 10^{-5} , upper limits are at 90% CL. The latest version is available at: http://hfag.phys.ntu.edu.tw/b2charm/00103.html

Mode	PDG 2006	Belle	BABAR	CDF	Average
$J/\psi(1S)\Sigma^0\bar{p}$	< 1.10	< 1.10			< 1.10
$J/\psi(1S)\Lambda \bar{p}$	1.18 ± 0.31	$1.16 \pm 0.28 \pm ^{0.18}_{0.23}$	$1.16 \pm_{0.53}^{0.74} \pm_{0.18}^{0.42}$		1.16 ± 0.31
$D^{*+}(2010)p\bar{p}$		< 1.50			< 1.50
$D^+par{p}$		< 1.50			< 1.50
$\Sigma_c^{*0} \bar{p}$	< 4.6	< 4.6			< 4.6
$\Sigma_c^0 \bar{p}$	< 8.0	< 9.3			< 9.3
$\Lambda_c^+ \bar{p} \pi^-$	21.0 ± 7.0	$18.7 \pm ^{4.3}_{4.0} \pm 2.8 \pm 4.9$	$35.3 \pm 1.8 \pm 3.1 \pm 9.2$		$24.2\pm^{5.6}_{5.7}$
$\Lambda_c^+ \Lambda_c^- K^-$		$65.0 \pm_{9.0}^{10.0} \pm 11.0 \pm 34.0$			65 ± 37

Table 2: Product branching fractions of charged B modes producing baryons in units of 10^{-5} , upper limits are at 90% CL. The latest version is available at: http://hfag.phys.ntu.edu.tw/b2charm/00103.html

Mode	PDG 2006	Belle	BABAR	CDF	Average
$K^-\eta_c(1S)[\Lambda\bar{\Lambda}]$		$0.095 \pm_{0.022}^{0.025} \pm_{0.011}^{0.008}$			0.10 ± 0.03
$K^-\eta_c(1S)[p\bar{p}]$	0.12 ± 0.04	$0.14 \pm 0.01 \pm {0.02 \atop 0.02}$	$0.18 \pm_{0.02}^{0.03} \pm 0.02$		0.15 ± 0.02
$K^-J/\psi(1S)[\Lambda\bar{\Lambda}]$		$0.20 \pm_{0.03}^{0.03} \pm 0.03$			0.20 ± 0.05
$K^-J/\psi(1S)[p\bar{p}]$	0.22 ± 0.01	$0.22 \pm 0.01 \pm 0.01$	$0.22 \pm 0.02 \pm 0.01$		0.22 ± 0.01
$\Lambda_c^-\Xi_c^0[\Xi^-\pi^+]$		$4.80 \pm ^{1.00}_{0.90} \pm 1.10 \pm 1.20$			$\textbf{4.8} \pm \textbf{1.9}$

Table 3: Ratios of branching fractions of charged B modes producing baryons in units of 10^{0} , upper limits are at 90% CL. The latest version is available at: http://hfag.phys.ntu.edu.tw/b2charm/00103.html

Mode	PDG 2006	Belle	BABAR	CDF	Average
$\frac{\mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-)}{\mathcal{B}(\bar{B}^0 \to \Lambda_c^+ \bar{p})}$			$16.4 \pm 2.9 \pm 1.3$		16.4 ± 3.2